Empirical and hierarchical Bayesian estimation of ancestral states.

نویسندگان

  • J P Huelsenbeck
  • J P Bollback
چکیده

Several methods have been proposed to infer the states at the ancestral nodes on a phylogeny. These methods assume a specific tree and set of branch lengths when estimating the ancestral character state. Inferences of the ancestral states, then, are conditioned on the tree and branch lengths being true. We develop a hierarchical Bayes method for inferring the ancestral states on a tree. The method integrates over uncertainty in the tree, branch lengths, and substitution model parameters by using Markov chain Monte Carlo. We compare the hierarchical Bayes inferences of ancestral states with inferences of ancestral states made under the assumption that a specific tree is correct. We find that the methods are correlated, but that accommodating uncertainty in parameters of the phylogenetic model can make inferences of ancestral states even more uncertain than they would be in an empirical Bayes analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Bayesian Estimation of Parameters in the Exponentiated Gumbel Distribution

Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...

متن کامل

Classical and Bayesian inference in neuroimaging: theory.

This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarch...

متن کامل

A Bayesian approach to the estimation of ancestral genome arrangements.

We describe a Bayesian approach to estimate phylogeny and ancestral genome arrangements on the basis of genome arrangement data using a model in which gene inversion is the sole mechanism of change. While we have described a similar method to estimate phylogenetic relationships in the statistics literature, the novel contribution of the present work is the description of a method to compute pro...

متن کامل

Hierarchical Variational Models (Appendix)

Relationship to empirical Bayes and RL. The augmentation with a variational prior has strong ties to empirical Bayesian methods, which use data to estimate hyperparameters of a prior distribution (Robbins, 1964; Efron & Morris, 1973). In general, empirical Bayes considers the fully Bayesian treatment of a hyperprior on the original prior—here, the variational prior on the original meanfield—and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systematic biology

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2001